pprof 的使用
什么是 Profiling?
Profiling 这个词比较难翻译,一般译成画像。比如在案件侦破的时候会对嫌疑人做画像,从犯罪现场的种种证据,找到嫌疑人的各种特征,方便对嫌疑人进行排查;还有就是互联网公司会对用户信息做画像,通过了解用户各个属性(年龄、性别、消费能力等),方便为用户推荐内容或者广告。
在计算机性能调试领域里,profiling 就是对应用的画像,这里画像就是应用使用 CPU 和内存的情况。也就是说应用使用了多少 CPU 资源?都是哪些部分在使用?每个函数使用的比例是多少?有哪些函数在等待 CPU 资源?知道了这些,我们就能对应用进行规划,也能快速定位性能瓶颈。
golang 是一个对性能特别看重的语言,因此语言中自带了 profiling 的库,这篇文章就要讲解怎么在 golang 中做 profiling。
在 go 语言中,主要关注的应用运行情况主要包括以下几种:
- CPU profile:报告程序的 CPU 使用情况,按照一定频率去采集应用程序在 CPU 和寄存器上面的数据
- Memory Profile(Heap Profile):报告程序的内存使用情况
- Block Profiling:报告 goroutines 不在运行状态的情况,可以用来分析和查找死锁等性能瓶颈
- Goroutine Profiling:报告 goroutines 的使用情况,有哪些 goroutine,它们的调用关系是怎样的
两种收集方式
做 Profiling 第一步就是怎么获取应用程序的运行情况数据。go 语言提供了 runtime/pprof 和 net/http/pprof 两个库,这部分我们讲讲它们的用法以及使用场景。
工具型应用
如果你的应用是一次性的,运行一段时间就结束。那么最好的办法,就是在应用退出的时候把 profiling 的报告保存到文件中,进行分析。对于这种情况,可以使用 runtime/pprof 库。
pprof 封装了很好的接口供我们使用,比如要想进行 CPU Profiling,可以调用 pprof.StartCPUProfile() 方法,它会对当前应用程序进行 CPU profiling,并写入到提供的参数中(w io.Writer),要停止调用 StopCPUProfile() 即可。
去除错误处理只需要三行内容,一般把部分内容写在 main.go 文件中,应用程序启动之后就开始执行:
1 | f, err := os.Create(\*cpuprofile) ... pprof.StartCPUProfile(f) defer pprof.StopCPUProfile() |
应用执行结束后,就会生成一个文件,保存了我们的 CPU profiling 数据。
想要获得内存的数据,直接使用 WriteHeapProfile 就行,不用 start 和 stop 这两个步骤了:
1 | f, err := os.Create(\*memprofile) pprof.WriteHeapProfile(f) f.Close() |
服务型应用
如果你的应用是一直运行的,比如 web 应用,那么可以使用 net/http/pprof 库,它能够在提供 HTTP 服务进行分析。
如果使用了默认的 http.DefaultServeMux(通常是代码直接使用 http.ListenAndServe(“0.0.0.0:8000”, nil)),只需要添加一行:
1 | import \_ "net/http/pprof" |
如果你使用自定义的 Mux,则需要手动注册一些路由规则:
1 | r.HandleFunc("/debug/pprof/", pprof.Index) |
不管哪种方式,你的 HTTP 服务都会多出 /debug/pprof endpoint,访问它会得到类似下面的内容:
1 | /debug/pprof/ |
这个路径下还有几个子页面:
1 | /debug/pprof/profile:访问这个链接会自动进行 CPU profiling,持续 30s,并生成一个文件供下载 |
go tool pprof 命令:获取和分析 Profiling 数据
能通过对应的库获取想要的 Profiling 数据之后(不管是文件还是 http),下一步就是要对这些数据进行保存和分析,我们可以使用 go tool pprof 命令行工具。
在后面我们会生成调用关系图和火焰图,需要安装 graphviz 软件包,在 ubuntu 系统可以使用下面的命令:
1 | sudo apt-get install -y graphviz |
NOTE:获取的 Profiling 数据是动态的,要想获得有效的数据,请保证应用处于较大的负载(比如正在生成中运行的服务,或者通过其他工具模拟访问压力)。否则如果应用处于空闲状态,得到的结果可能没有任何意义。
CPU Profiling
go tool pprof 最简单的使用方式为 go tool pprof [binary] [source]
,binary 是应用的二进制文件,用来解析各种符号;source 表示 profile 数据的来源,可以是本地的文件,也可以是 http 地址。比如:
1 | ➜ go tool pprof ./hyperkube http://172.16.3.232:10251/debug/pprof/profile |
这个命令会进行 CPU profiling 分析,等待一段时间(默认是 30s,如果在 url 最后加上 ?seconds=60 参数可以调整采集数据的时间为 60s)之后,我们就进入了一个交互式命令行,可以对解析的结果进行查看和导出。可以通过 help 来查看支持的自命令有哪些。
一个有用的命令是 topN,它列出最耗时间的地方:
1 | (pprof) top10 |
每一行表示一个函数的信息。前两列表示函数在 CPU 上运行的时间以及百分比;第三列是当前所有函数累加使用 CPU 的比例;第四列和第五列代表这个函数以及子函数运行所占用的时间和比例(也被称为累加值 cumulative),应该大于等于前两列的值;最后一列就是函数的名字。如果应用程序有性能问题,上面这些信息应该能告诉我们时间都花费在哪些函数的执行上了。
pprof 不仅能打印出最耗时的地方(top),还能列出函数代码以及对应的取样数据(list)、汇编代码以及对应的取样数据(disasm),而且能以各种样式进行输出,比如 svg、gv、callgrind、png、gif 等等。
其中一个非常便利的是 web 命令,在交互模式下输入 web,就能自动生成一个 svg 文件,并跳转到浏览器打开,生成了一个函数调用图:
这个调用图包含了更多的信息,而且可视化的图像能让我们更清楚地理解整个应用程序的全貌。图中每个方框对应一个函数,方框越大代表执行的时间越久(包括它调用的子函数执行时间,但并不是正比的关系);方框之间的箭头代表着调用关系,箭头上的数字代表被调用函数的执行时间。
因为原图比较大,这里只截取了其中一部分,但是能明显看到 encoding/json.(*decodeState).object 是这里耗时比较多的地方,而且能看到它调用了哪些函数,分别函数多少。这些更详细的信息对于定位和调优性能是非常有帮助的!
要想更细致分析,就要精确到代码级别了,看看每行代码的耗时,直接定位到出现性能问题的那行代码。pprof 也能做到,list 命令后面跟着一个正则表达式,就能查看匹配函数的代码以及每行代码的耗时:
1 | (pprof) list podFitsOnNode |
如果想要了解对应的汇编代码,可以使用 disadm
NOTE:更详细的 pprof 使用方法可以参考 pprof –help 或者 pprof 文档。
Memory Profiling
要想获得内存使用 Profiling 信息,只需要把数据源修改一下就行(对于 http 方式来说就是修改 url 的地址,从 /debug/pprof/profile 改成 /debug/pprof/heap):
1 | ➜ go tool pprof ./hyperkube http://172.16.3.232:10251/debug/pprof/heap |
和 CPU Profiling 使用一样,使用 top N 可以打印出使用内存最多的函数列表:
1 | (pprof) top |
每一列的含义也是类似的,只不过从 CPU 使用时间变成了内存使用大小,就不多解释了。
类似的,web 命令也能生成 svg 图片在浏览器中打开,从中可以看到函数调用关系,以及每个函数的内存使用多少。
需要注意的是,默认情况下,统计的是内存使用大小,如果执行命令的时候加上 –inuse_objects 可以查看每个函数分配的对象数;–alloc-space 查看分配的内存空间大小。
常用命令
1 | go tool pprof -http=":60000" '127.0.0.1:27159/debug/pprof/profile' |